SocioDone

Социология: современные тенденции

Свойства расслоения
Страница 2

, наиболее близкого ко всем точкам wi. Таким образом, само множество принадлежит пространству, в котором определена близость точек.

Наиболее часто в качестве центра используют среднее значение всех точек множества w

. Таким образом, для пространства, из которого взято множество, определены операции сложения и умножения на число. Более того, в частности, общество может состоять из нескольких групп - множеств, поэтому множества точек - групп могут быть объединены, т.е. в пространстве определена операция объединения множеств. Далее требования к пространству, к которому принадлежат точки – благосостояния отдельных людей - будут уточняться.

Свойство повторения. Допустим, что людей некоторого общества можно разбить по благосостоянию или доходам, эти два термина употребляются как синонимы, на две или более групп так, что каждая группа будет полным повторением и по числу и по благосостоянию людей некоторой исходной. Ясно, что при таком предположении расслоение всего общества и каждой его группы должно быть одним и тем же. Поэтому этому свойству неизменности при повторении, которым обладает само расслоение, должен удовлетворять и показатель.

Условие 2 (повторения)

. Функция от объединения r одинаковых множеств может быть показателем расслоения, если она инвариантна по отношению к умножению множества на число, J(rw

,rn)=J(w

,n) при r>0.

В последнем соотношении введено новое обозначение: w

i=rw

, если все w

i=w

. Кроме того, при обозначении функции был добавлен аргумент n, чтобы учесть вес множества. Весом каждого из объединяемых множеств, особенно в случае, когда количество элементов (людей) в них не равно друг другу, может служить, например, число точек во множестве (т.е. число людей в группе). Когда общество состоит из нескольких групп, численности которых ni, то величина ni может служить мерой группы.

В последнем случае мерой всего общества может служить n=S

ini. Теперь из условия повторения получается, что расслоение не зависит от количества людей, следовательно, и общество и его группы можно “стандартизовать”, разделив на их численность. Отсюда вытекает, что функция может не зависеть от n, но тогда вместо множества w

и его элементов wi следует использовать их меру, которой после стандартизации будет вероятностная. В этом случае мерой группы в обществе будет ni/n=li, мерой P(w

) элемента w во всем обществе будет смесь мер Pi(w

) всех составляющих его групп, т.е. P(w

)=S

iliPi(w

). Вместо вероятностной меры P далее почти всегда будет использоваться функция распределения F, так как пространство благосостояний (доходов) имеет отношение порядка p (<), т.е. F(w)=P(w

pw).

Первые два свойства расслоения имели, как оказалось, малое отношение к самому расслоения, они скорее описывали само общество и его группы. Поэтому далее обозначения (w

,n), (F,n) и F эквивалентны.

Из последних двух свойств расслоения следует вывод. Расслоение P

(w

) как функция множества w

представляет собой функционал от вероятностной (как, впрочем, и любой конечной) меры F множеств. Действительно, эта мера не меняется от перестановок и повторения. Наконец, объединение нескольких множеств можно отождествить с со смесью вероятностных мер каждого из них с вероятностями, пропорциональными их весам (числу элементов, доходам). Кажется очевидным, что при объединении различных по доходам множеств (групп) людей расслоение вновь получившегося общества будет не убывать, а увеличиваться

Страницы: 1 2 3 4


Другие материалы:

Анализ динамических рядов. Природно-экономическая характеристика Сухиничиского района
Сухинический район, один из центральных районов Калужской области. В центре района пересекаются железная дорога и автомобильная магистраль. Развитие поселка связано со строительством Московско-Киевской железной дорогой. Шоссейная дорога М ...

Внутрисемейные отношения по «Домострою»
В российском религиозном мировоззрении корни язычества, «двоеверия» достаточно сильны. Возможно, поэтому православное христианство встало в борьбе между двумя языческими началами – женским и мужским – на сторону мужского, приводя семью к ...

Метод экспертных оценок
Иногда на практике могут возникать ситуации, когда для оценки какого-либо явления трудно или вообще невозможно выделить объект – носитель проблемы и, соответственно, использовать его в качестве источника информации. Чаще всего такие ситуа ...