SocioDone

Социология: современные тенденции

Частные показатели

Осталось привести лишь частные случаи. При a=0 имеем

I(F)=,

при a=1 получается мера расслоения Тайла (Theil):

I(F)=,

наконец, при a=2 имеем квадрат коэффициента вариации:

I(F)=,

множители перед интегралом опущены в соответствии с определением разложимости.

Рассмотрим общество, заданное функцией распределения F, состоящее из m групп, каждая из которых определяется своей функцией распределения Fi (). В этом случае F=, где li³0, и Sli=1. Кроме того, чтобы F была функцией распределения всего общества необходимо представление распределения центров групп в виде F0(x)=SiH(x-xi)li, где H(x) - функция Хевисайда, т.е. она равна 1 при x³0 и 0 в других случаях, а li=ni/n и xi=m(Fi).

Остается привести лишь разложения уже приведенных показателей расслоения.

Для первого показателя - логарифмической меры расслоения - имеем функцию w(x)=-ln[x/m(F)], которая дает название меры. Для нее весовая функция p имеет вид p[m(Fi)]=1. а показатель расслоения

I[m(F)]=,

или, в более общем виде для распределения F(x)=, где F(x/l)=Fi(x) при l=m(Fi),

.

Для меры неравенства Тейла функция w(x)=[x/m(F)]ln[x/m(F)], весовая функция p[m(Fl)]=[l/m(F)], поэтому,

Для квадрата коэффициента вариации функция w(x)=[x/m(F)]2-1, весовая функция p[m(Fl)]=[l/m(F)]2 и

.

В самом общем виде для функции w(x)=[x/m(F)]a-1 весовая функция p[m(Fl)] будет равна [l/m(F)]a, а разложимый показатель расслоения для любого a имеет вид

.

Для того, чтобы убедиться в неотрицательности любого из приведенных показателей бедности следует проделать следующее. Во-первых, все представленные в показателях расслоения весовые функции w(x) выпуклы. Во-вторых, все функции распределения Fl таковы, что их средние значения равны единице. В-третьих, для выпуклых функций w справедливо неравенство Йенсена E

w(X)³w(E

X). Теперь, применив неравенство Йенсена к весовой функции w[x/m(F)] получаем требуемый результат.

Последнее обстоятельство, на которое необходимо обратить внимание, заключается в том, что функция Лоренца разложима в смысле уже данного определения. Действительно, пусть F(w)=SlIFi(w). Тогда справедливо равенство L(w)=(1|W)SliWiLi(w), которое следует из определения функции Лоренца после вынесения из-под знака интеграла Sli и умножения каждого слагаемого на Wi/Wi. Легко убедиться, что сумма весов (lIWi/W) последнего соотношения равна 1. Однако коэффициент Джини неразложим. Наконец, энтропия распределения, представляющего собой функцию Лоренца, это разложимая мера расслоения Тейла.


Другие материалы:

Реабилитация детей-инвалидов как социальная проблема
В настоящие время процесс реабилитации инвалидов является предметом исследования специалистов многих отраслей научного знания. Психологи, философы, социологи, педагоги, социальные психологи и т.д. вскрывают различные аспекты этого процесс ...

Групповая психосоциальная работа с женщинами
Женская группа как условие получения и оказания психосоциальной помощи Актуальность групповой работы с женщинами в условиях современной российской действительности не нуждается в аргументации. В ее основу сегодня берутся научно-теоретиче ...

Теоретические основы благотворительной деятельности. Понятие и классификация благотворительности
Одной из ключевых проблем исследования благотворительной деятельности до сих пор остается слабо проработанный терминологический аппарат и соответственно связанные с этим разночтения в понимании благотворительности как явления. Среди иссл ...