Малая выборкаСтраница 1
Если генеральная совокупность подчинена нормальному закону распределения (что на практике имеет место очень часто), то выборочная средняя как средняя арифметическая п нормально распределенных случайных величин также имеет нормальный закон распределения. Таким образом, величина
распределена по стандартному нормальному закону, и схема решения задач при известном генеральном среднем квадратическом отклонении σ остается прежней.
Если же генеральное среднее квадратическое отклонение σ неизвестно и приходится пользоваться его выборочной оценкой s, то используется статистика t (1.9.26), которая, как мы уже отмечали, подчинена закону распределения Стьюдента с v = n—1 степенями свободы. При v < 30 имеются значительные различия между распределением Стьюдента и нормальным распределением (тем более значительные, чем меньше v). Используя функцию распределения Стьюдента, мы можем записать равенство, аналогичное формуле Лапласа:
(1.9.27)
где S(t, v) — функция Стьюдента, значения которой для различных значений t
и v подробно рассчитаны и представлены в специальных таблицах.
Выражение (
1.9.27)
эквивалентно выражению:
(1.9.28)
где
Решение задач с помощью этого равенства аналогично решению задач с использованием формулы Лапласа. Лишь определение п несколько усложняется из-за того, что оно входит также в параметр v = n—1.
Поэтому можно воспользоваться схемой последовательных приближений. Вначале производят оценку (s2) генеральной дисперсии. Затем находят п1 по схеме (1.9.25), используя таблицу функции Лапласа и принимая σ2 = s2- По найденному n1 и, соответственно, v1 = n1 — 1 и заданному значению
Р=1—α определяют t1 (по таблице распределения Стьюдента) и вычисляют и так далее.
Теперь можно снова повторить расчет по v2 = n2 — 1 и т.д.
Итерация заканчивается, если окажется ni ≈ ni-1.
Пример 1.9.7.
Для определения среднего заработка работника за день при соблюдении необходимых условий было отобрано 10 работников, заработок которых оказался равным (в руб.): 325; 337; 319; 330; 327; 328; 332; 320; 318; 334. Требуется определить с вероятностью 0,95 доверительный интервал для среднего заработка работников в генеральной совокупности, если есть основания полагать, что заработная плата в генеральной совокупности подчиняется нормальному закону определения.
Решение:
По данным выборки определяем среднюю и дисперсию. Получаем
;
Рассчитываем несмещенную оценку генеральной дисперсии
Предположение о нормальном характере генерального распределения позволяет нам использовать равенства (1.9.27) и (1.9.28). Обращаясь к таблице значений функции Стьюдента, по заданным P = 2S(t, v)=0,95 и v = n—1 = 10 – 1 = 9 находим t = 2,26.
Другие материалы:
Анализ организации социальной работы с детьми-инвалидами Управлением
социальной защиты населения по г. Благовещенску и Благовещенскому району
Управление министерства социальной защиты населения Амурской области по г. Благовещенск и Благовещенскому району осуществляет на территории г. Благовещенска и Благовещенского района единую государственную социальную политику в области соц ...
История социологии. Основные
понятия
Позитивизм, социальный факт, солидарность, общественно-экономическая формация, способ производства, производительные силы, производственные отношения, конфликт, «понимание», идеальный тип, отнесение к ценностям, макросоциология, микросоци ...
Основные проблемы семей, имеющих детей с отклонениями в развитии
Характеристика всех направлений реабилитационной деятельности показывает, что их реализация на практике может оказать существенную помощь ребенку-инвалиду и его семье.
По данным исследований различных специалистов на первое место среди э ...